Plans for liquid lithium wall experiments in CDX-U

R. Majeski, a R. Kaita, a P. Efthimion, a B. Jones, a H. Kugel, a R. Maingi, b, P. Mioduszewski, b T. Munsat, a

A. Post-Zwicker, a J. Spaleta, a G. Taylor, a M. Finkenthal, M. Iovea, b V. Soukhanovskii, D. Stutman, S. Luckhardt, R. Doerner, and D. Hoffmane

Laboratory, cJohns Hopkins University, dUniversity of California at ^aPrinceton Plasma Physics Laboratory, ^bOak Ridge National San Diego, ^eDrexel University

Innovative Confinement Concepts Workshop

Lawrence Berkeley Laboratory

22-25 January 2000

Liquid lithium experiments in CDX-U

- revolutionary solution to the plasma-wall interaction problem Liquid metal walls and divertors have been identified as a potentially
- surface may significantly enhance stability and performance (L. Zakharov, M. Katsenreuther). In addition, a liquid metal wall in close proximity to the last closed flux
- Low/no recycling edge.
- » Advantages demonstrated during the TFTR pellet, effusion oven, and DOLLOP experiments
- Higher allowable κ , higher β >20% for conventional A (Zakharov).
- Liquid *lithium* offers the best synthesis of desirable properties
- But no one wants to fill a PoP or PE level device with liquid lithium!
- the testing of liquid metal limiter, divertor and wall concepts. As a first step, the CDX-U program has now been given over *entirely* to
- Part of the ALPS/APEX liquid divertor/walls initiative

Physics and technology issues for liquid lithium

- Lithium plasma fueling and core impurity accumulation.
- Temperature rise during plasma operation will ramp evaporation rate.
- Plasma edge with a very low recycling limiter.
- Fueling with hydrogenics.
- CDX-U utilizes gas puffing; no core fueling at present.
- Consequences of possible surface coatings formed in situ
- Lithium nitride layer may form during introduction into vessel.
- Lithium deuteride surface may form during plasma operation
- » LiD melts at 688°C but is highly soluble in lithium.
- Lithium handling.
- Loading, purification, pacification.

Physics and technology issues for liquid lithium

- Can lithium or any other liquid metal PFC be forced to behave during a tokamak discharge'?
- Liquid motion during PF coil ramps.
- » Toroidal currents can flow within continuous lithium divertor

target.

- » Might affect position control or MHD stability (partial conducting shell).
- Motion during a VDE.
- Halo current induced j x B forces.
- » Lithium propulsion is not a research goal.
- Electromagnetic restraint may be necessary.

Liquid lithium tests in CDX-U

- Staged approach:
- Liquid lithium rail limiter will be the first step.
- » Designed and fabricated at UCSD.
- » Lithium capillary (mesh) system
- Toroidal liquid lithium belt limiter will follow.
- PPPL/Sandia/Argonne/UCSD collaboration.
- with strike points on the belt limiter system. CDX-U PF system will be augmented to allow single-null operation
- Future tests:
- Flowing lithium.
- Partial wall coverage.

CDX-U

CDX-U is a START-scale spherical torus.

- $R_0 = 34 \text{ cm}$
- a = 22 cm
- $A \equiv R_0/a \ge 1.5$
- $\kappa \leq 1.7$
- $\delta > 0.2$
- $B_t \le 0.22 \text{ Tesla}$
- Ohmic $I_p \le 100 \text{ kA}$
- $n_e(0) < 5 \times 10^{13} \, cm^{-3}$.
- $T_e \sim 100 \text{ eV}$
- $P_{auxilliary} \le 300 \text{ kW (rf)}$
- Discharge duration: 20-40 msec

Density and temperature profiles from multipoint Thomson scattering

CDX-U typically operates with peak densities in the mid 10¹³ cm⁻³. Profiles are highly peaked.

Temperature profiles are flat to hollow. Peak electron temperatures ~ 100 eV (ohmic discharge).

core plasma will be the JHU multilayer mirror array Primary diagnostic for lithium concentration in the

UCSD lithium rail limiter

- First lithium system scheduled to be tested is now in final design at UCSD.
- Heated cylindrical rail limiter.

Surface will be a stainless steel mesh wet with liquid lithium.

- » Similar to the T-11M system (Pistunovich et al., J. Nucl. Mater. 1997, vol. 241-243, p. 1190)
- Lithium will be resupplied from a heated reservoir.
- Primary limiting surface for the discharge
- diagnostics accommodate the liquid lithium limiter ("L3") and the associated The porting on one toroidal sector of CDX-U will be reworked to
- Installation expected in May.

Design of the liquid lithium rail limiter UCSD/PISCES - R. Doerner, L. Chousal, S. Luckhardt

- Lithium rail "head" can be retracted through an airlock assembly, serviced.
- Lithium/mesh system independently heated.
- ΔT from a single CDX shot ~ 100°C; insufficient to melt room-temperature lithium.

Full toroidal lithium limiter target will be installed following the L3 experiments

- Preliminary design calls for a 10 cm wide tray.
- Wet mesh and shallow "pool" designs under study.
- Silicone cooled shroud will protect the center stack, lower vacuum
- Lithium will be loaded into the trough under vacuum and melted.
- Subsequent installations will utilize larger in-vessel lithium inventories.
- Fill/drain systems to replace lithium without venting.
- Electromagnetic restraint to prevent "splashing".

J x B forces on liquid lithium during X-point strike readily eject lithium from DIII-D DiMES probe (D. Whyte, R. Doerner, S. Seradarian)

Toroidal liquid lithium divertor concept for CDX-U

- Lithium divertor tray and shroud installed
- Pumpdown
- Tray discharge cleaned
- Load lithium into tray under vacuum
- Melt lithium (>300 °C)
- Periodically discharge clean lithium surface

Summary

- CDX-U is pursuing an innovative wall concept.
- Experimental tests to follow promising studies by ALPS, APEX groups, other researchers (L. Zakharov, M.
 Katsenreuther), T11-M.
- Higher power loading may be feasible in a reactor with liquid metal walls.
- Stability limits may be significantly enhanced with a nearby, fast moving conductor for a wall.
- Low recycling walls have greatly improved performance in large devices.
- Wall conditioning (gettering!) enhances performance in smaller devices.
- Liquid metal walls are applicable in theory to a wide range of fusion concepts.

